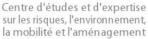


RISSC

AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL

RISSC


Module 4 : Solutions pour réduire le risque « cavités »

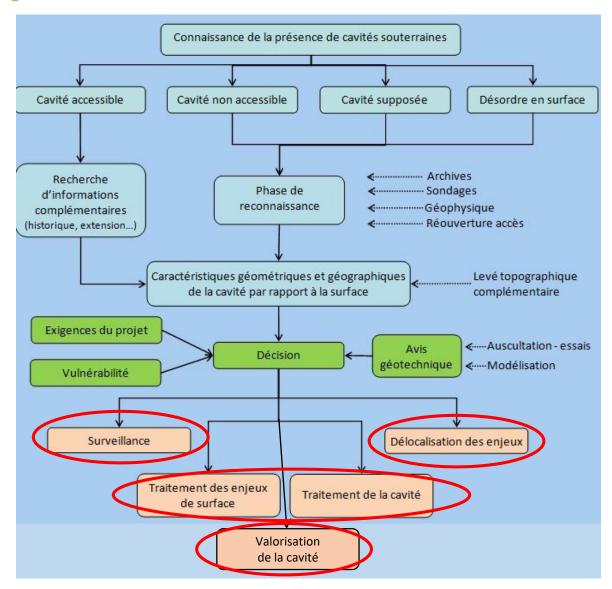
La mise en sécurité des cavités : surveillance, traitement, valorisation...

Catherine PINON
Ineris

Effondrement d'une carrière

Quand mettre en sécurité?

- > En phase préventive :
 - menace de ruine imminente en souterrain
 - mesures de protection les structures existantes (bâtis, voiries et réseaux)
 - à des fins d'aménagements futurs en surface (bâti, voirie, espaces verts...)
 - conserver la cavité ouverte pour réutilisation / valorisation (stockage, ouverture au public...)
- > En situation de crise : désordre en surface !
 - sécuriser la zone impactée
 - éviter l'aggravation des désordres



Quels sont les objectifs de la mise en sécurité?

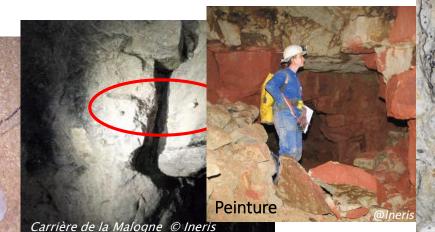
RISSC

- Garantir la stabilité du site (cavité et surface) dans le long terme
- Valoriser les terrains de surface ou l'ouvrage souterrain

Prévenir et réduire le risque associé aux cavités

Surveillance des cavités : quand et pourquoi ?

- Enjeux (habitations, infrastructures de surface ou activité en souterrain) pouvant être affectés par une instabilité de cavité souterraine
- Meilleure compréhension de l'évolution d'un mécanisme
- Dans la plupart des cas solution palliative :
 - dans l'attente d'une étude plus précise
 - dans l'attente de mesures ou traitements pérennes


Surveillance des cavités : l'inspection visuelle

RISSC

- 1. Repose sur des visites périodiques de géotechniciens
- 2. Permet d'apprécier l'évolution des désordres, y compris à l'aide d'indicateurs lorsque la simple observation parait difficile

3. S'accompagne de photos, de nuages de points 3D, d'une carte géotechnique...

Difficultés d'accès (gaz, eau ...)
« Subjectivité » des experts

Témoins visuels

Solution tout numérique

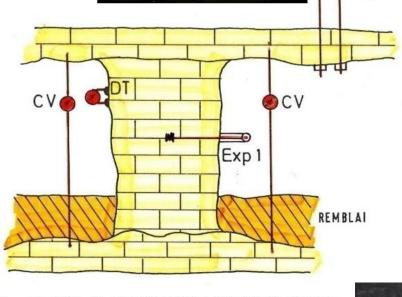
CENARIS

Mesures ponctuelles

de l'ouverture

e d'Hellemmes © Ineri

Surveillance des cavités : la surveillance instrumentée



- déplacement (en tous sens)
 et/ou de déformation
- mesures de pression

Accompagnement par la mesure de facteurs physico-chimiques

(T°, niveau d'eau, H%, gaz,...)

 Nombreux types de capteurs/dispositifs doivent être les plus résistants possibles

CV = Mesure de convergence entre toit et mur

Exp1 = Mesure d'expansion de pilier

Exp2 = Mesure d'expansion de toit

DT= Mesure d'écartement de fissure

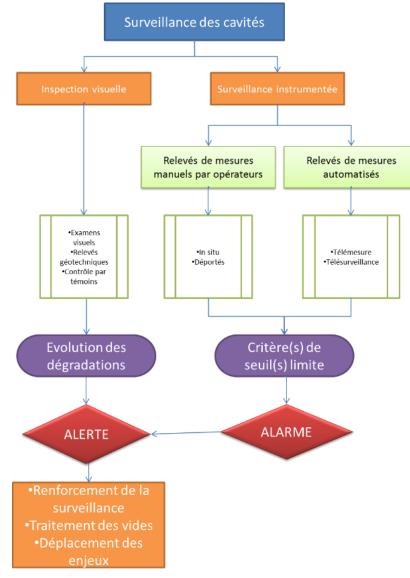
Exp2


@Ineris

Surveillance des cavités : la surveillance instrumentée

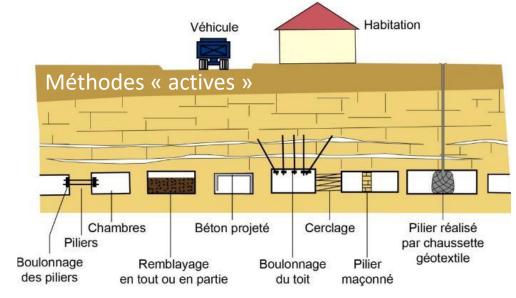
CENARIS

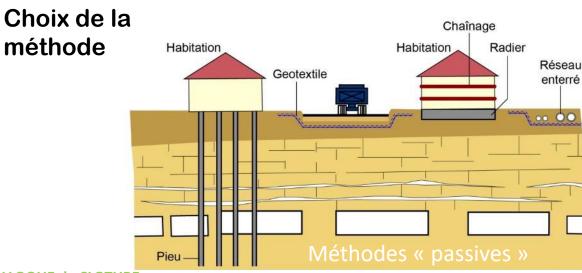
- Partage et centralisation des données
- Intégration en temps réel de données instrumentales depuis n'importe quel lieu sur un serveur centralisé et sécurisé
- Télémesures multi-paramètres pour l'acquisition simultanée de différents types de mesures géophysiques (microsismiques, acoustiques, ultrasoniques, vibrations), géotechniques, hydrologiques, géodésiques, météorologiques et de gaz
- Outil de gestion d'alarmes (envoi de courriel, appel téléphonique)


Points importants d'un dispositif de surveillance

RISSC

- Bien identifier l'objectif de l'auscultation
- S'assurer / maintenir le bon fonctionnement du dispositif (milieux agressifs)
- Gérer les données (acquisition / traitement / stockage / restitution)
- Identifier les situations anormales et préparer la crise

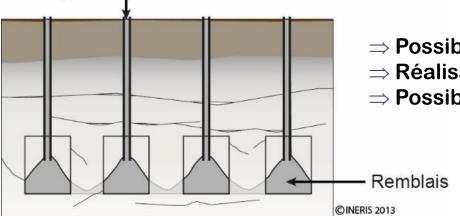

Coûts d'investissement et surtout d'entretien Vandalisme!



Comment traiter une cavité?

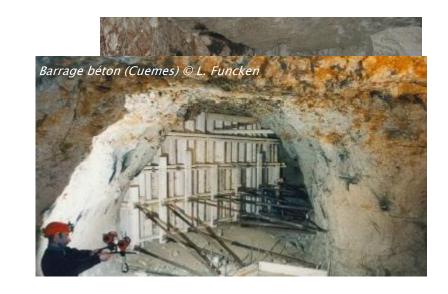
- Diagnostic : origine et mécanisme de dégradation
- Niveau de sécurité recherché ?
 - aléas redoutés ?
 - que peut-on admettre en surface ?
- > Destination du site?
 - prévention
 - réhabilitation de la surface
 - conserver la cavité ouverte
- > Configurations du site?
 - accessibilité
 - emprise/volume à traiter
 - présence d'eau
 - • •

Comblement de la cavité

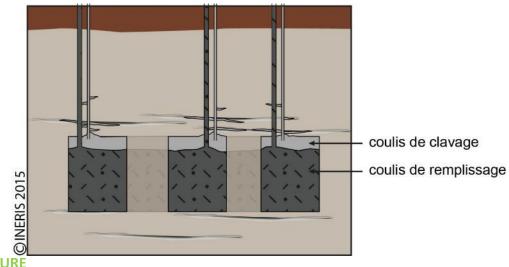

RISSC

Objectif : conforter et réduire les vides résiduels

Par déversement gravitaire depuis la surface :


<u>Principe</u>: remplir la cavité avec un matériau grossier et inerte

Forage/Puits de déversement



Par injections depuis la surface :

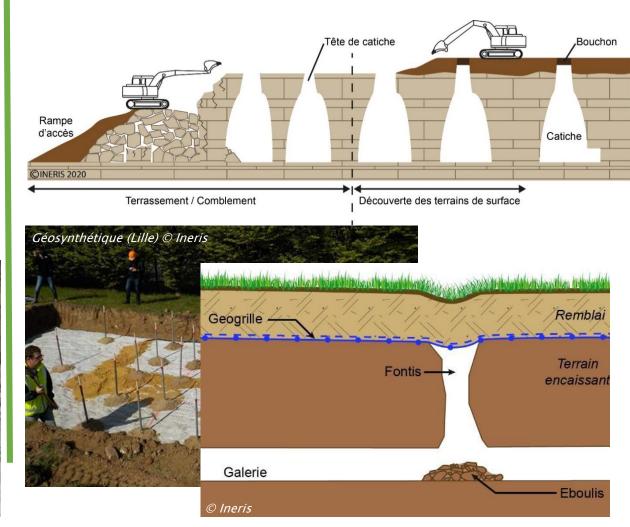
<u>Principe</u>: consolider des matériaux effondrés ou combler des vides par injection sous pression de produits

- ⇒ Possibilité de combler partiellement ou totalement la cavité
- ⇒ Réalisation de barrages s'il faut limiter la zone à traiter
- ⇒ Possibilité de combler sous eau

Comblement de la cavité

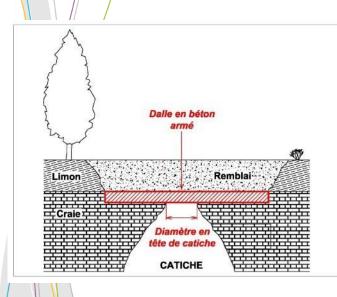
- Méthode efficace et pérenne
- Possibilité de mise en œuvre à grande profondeur, en cas de cavités inaccessibles et/ou de grandes dimensions
- Protection du bâti existant
- Méthode adaptée pour les constructions nouvelles (comblement total)

- Disponibilité d'un site accessible en surface pour forages/puits depuis la surface
- Tassements différés possibles si pas de clavage en comblement total et affaissements possibles de la surface si comblement partiel
- Fuites (notamment dans les remblais au sol des galeries)
- Nécessité de reconnaissances préliminaires développées et de contrôles rigoureux pendant et après la mise en place, volume précis difficile à estimer
- Opérations lourdes et couteuses
- Attention aux désordres sur le voisinage (pression d'injection)


Solutions alternatives au comblement par du béton

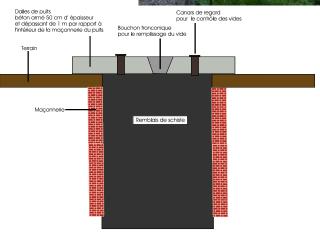
RISSC en Wallonie

en Hauts-de-France



Solutions alternatives au comblement en Wallonie et Hauts-de-France

RISSC


Notamment pour les puits ou catiches :

Valorisation des cavités : une autre approche de la gestion du risque ?!

RISSC

Stockage:

- ✓ Aliments (vins, fromages, champignons...)
- √ Civil ou militaire
- ✓ Archives ou données numériques
- ✓ Matières énergétiques ou ressources en eau
- ✓ Déchets : stériles d'exploitation, ménagers

ctivités touristiques et patrimoniales :

- ✓ Musées souterrains
- ✓ Parcours découvertes
- ✓ Salles de spectacle ou d'exposition
- ✓ Parcours/activités « sportives » (escape-game)
- √ Sites à vocation pédagogique

COLLOQUE de CLOTURE

Valorisation des cavités : avantages

RISSC

> Favorise la stabilité de l'édifice en l'état et la surveillance des désordres :

- prise en compte de l'effondrement en masse
- suivi des désordres locaux
- validation des confortements
- suivi des travaux d'aménagement de l'espace (évolutions et/ou extensions)

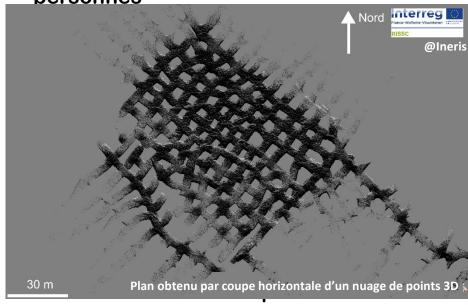
> Autres:

- conditions de température et d'hygrométrie stables et spécifiques
- soutien d'une activité économique locale et valorisation du patrimoine
- protection de la nature (faune et flore)

Mais, la présence d'une activité en souterrain n'est pas un gage de stabilité pérenne :

- · risque d'un abandon de l'activité
- mauvais entretien, travaux d'extension mal dimensionnés

Valorisation des cavités : recommandations


RISSC

Sélection du site / Préparation du projet :

- ✓ s'entourer de personnes compétentes (groupe technique piloté par un chargé de mission)
- ✓ anticiper les contraintes règlementaires
- ✓ identifier les éventuels risques de confrontation entre nouvelle activité et anciens sites souterrains, en tenant compte des facteurs aggravants
- ✓ disposer d'un plan (outils de numérisations 3D) ou d'un modèle géométrique/géologique tridimensionnel
- √ établir un état géotechnique initial par un expert
- ✓ travailler l'intégration territoriale locale (environnement et société)
- ✓ définir les besoins du projet / ressources locales (notamment énergie et autres infrastructures au regard des besoins spécifiques : ventilation, pompage, éclairage...)

Exploitation du projet:

✓ prévoir, anticiper et planifier les travaux de confortement pour protéger les biens et les personnes

accessibles par un public non autorisé

Fin du projet :

- È prévoir dès la phase initiale
- ✓ permettre une autre valorisation ultérieure

RISSC

AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL

RISSC

Merci de votre attention

Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement

maîtriser le risque pour un développement durable

